\(\int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx\) [149]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 64 \[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=-\frac {b x \sqrt {1+c^2 x^2}}{c \sqrt {d+c^2 d x^2}}+\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{c^2 d} \]

[Out]

-b*x*(c^2*x^2+1)^(1/2)/c/(c^2*d*x^2+d)^(1/2)+(a+b*arcsinh(c*x))*(c^2*d*x^2+d)^(1/2)/c^2/d

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {5798, 8} \[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=\frac {\sqrt {c^2 d x^2+d} (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {b x \sqrt {c^2 x^2+1}}{c \sqrt {c^2 d x^2+d}} \]

[In]

Int[(x*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

-((b*x*Sqrt[1 + c^2*x^2])/(c*Sqrt[d + c^2*d*x^2])) + (Sqrt[d + c^2*d*x^2]*(a + b*ArcSinh[c*x]))/(c^2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 5798

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p], Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e
, c^2*d] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{c^2 d}-\frac {\left (b \sqrt {1+c^2 x^2}\right ) \int 1 \, dx}{c \sqrt {d+c^2 d x^2}} \\ & = -\frac {b x \sqrt {1+c^2 x^2}}{c \sqrt {d+c^2 d x^2}}+\frac {\sqrt {d+c^2 d x^2} (a+b \text {arcsinh}(c x))}{c^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.16 \[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=\frac {\sqrt {d+c^2 d x^2} \left (-b c x+a \sqrt {1+c^2 x^2}+b \sqrt {1+c^2 x^2} \text {arcsinh}(c x)\right )}{c^2 d \sqrt {1+c^2 x^2}} \]

[In]

Integrate[(x*(a + b*ArcSinh[c*x]))/Sqrt[d + c^2*d*x^2],x]

[Out]

(Sqrt[d + c^2*d*x^2]*(-(b*c*x) + a*Sqrt[1 + c^2*x^2] + b*Sqrt[1 + c^2*x^2]*ArcSinh[c*x]))/(c^2*d*Sqrt[1 + c^2*
x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(147\) vs. \(2(58)=116\).

Time = 0.24 (sec) , antiderivative size = 148, normalized size of antiderivative = 2.31

method result size
default \(\frac {a \sqrt {c^{2} d \,x^{2}+d}}{c^{2} d}+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}+c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (-1+\operatorname {arcsinh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (\operatorname {arcsinh}\left (c x \right )+1\right )}{2 c^{2} d \left (c^{2} x^{2}+1\right )}\right )\) \(148\)
parts \(\frac {a \sqrt {c^{2} d \,x^{2}+d}}{c^{2} d}+b \left (\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}+c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (-1+\operatorname {arcsinh}\left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}+1\right )}+\frac {\sqrt {d \left (c^{2} x^{2}+1\right )}\, \left (c^{2} x^{2}-c x \sqrt {c^{2} x^{2}+1}+1\right ) \left (\operatorname {arcsinh}\left (c x \right )+1\right )}{2 c^{2} d \left (c^{2} x^{2}+1\right )}\right )\) \(148\)

[In]

int(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

a/c^2/d*(c^2*d*x^2+d)^(1/2)+b*(1/2*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2+c*x*(c^2*x^2+1)^(1/2)+1)*(-1+arcsinh(c*x))/c
^2/d/(c^2*x^2+1)+1/2*(d*(c^2*x^2+1))^(1/2)*(c^2*x^2-c*x*(c^2*x^2+1)^(1/2)+1)*(arcsinh(c*x)+1)/c^2/d/(c^2*x^2+1
))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.50 \[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=\frac {{\left (b c^{2} x^{2} + b\right )} \sqrt {c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) + {\left (a c^{2} x^{2} - \sqrt {c^{2} x^{2} + 1} b c x + a\right )} \sqrt {c^{2} d x^{2} + d}}{c^{4} d x^{2} + c^{2} d} \]

[In]

integrate(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

((b*c^2*x^2 + b)*sqrt(c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 + 1)) + (a*c^2*x^2 - sqrt(c^2*x^2 + 1)*b*c*x + a)*
sqrt(c^2*d*x^2 + d))/(c^4*d*x^2 + c^2*d)

Sympy [F]

\[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=\int \frac {x \left (a + b \operatorname {asinh}{\left (c x \right )}\right )}{\sqrt {d \left (c^{2} x^{2} + 1\right )}}\, dx \]

[In]

integrate(x*(a+b*asinh(c*x))/(c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*asinh(c*x))/sqrt(d*(c**2*x**2 + 1)), x)

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.86 \[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=-\frac {b x}{c \sqrt {d}} + \frac {\sqrt {c^{2} d x^{2} + d} b \operatorname {arsinh}\left (c x\right )}{c^{2} d} + \frac {\sqrt {c^{2} d x^{2} + d} a}{c^{2} d} \]

[In]

integrate(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-b*x/(c*sqrt(d)) + sqrt(c^2*d*x^2 + d)*b*arcsinh(c*x)/(c^2*d) + sqrt(c^2*d*x^2 + d)*a/(c^2*d)

Giac [F]

\[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=\int { \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )} x}{\sqrt {c^{2} d x^{2} + d}} \,d x } \]

[In]

integrate(x*(a+b*arcsinh(c*x))/(c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)*x/sqrt(c^2*d*x^2 + d), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \text {arcsinh}(c x))}{\sqrt {d+c^2 d x^2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}{\sqrt {d\,c^2\,x^2+d}} \,d x \]

[In]

int((x*(a + b*asinh(c*x)))/(d + c^2*d*x^2)^(1/2),x)

[Out]

int((x*(a + b*asinh(c*x)))/(d + c^2*d*x^2)^(1/2), x)